Layout Estimation of Highly Cluttered Indoor Scenes Using Geometric and Semantic Cues
نویسندگان
چکیده
Recovering the spatial layout of cluttered indoor scenes is a challenging problem. Current methods generate layout hypotheses from vanishing point estimates produced using 2D image features. This method fails in highly cluttered scenes in which most of the image features come from clutter instead of the room’s geometric structure. In this paper, we propose to use human detections as cues to more accurately estimate the vanishing points. Our method is built on top of the fact that people are often the focus of indoor scenes, and that the scene and the people within the scene should have consistent geometric configurations in 3D space. We contribute a new data set of highly cluttered indoor scenes containing people, on which we provide baselines and evaluate our method. This evaluation shows that our approach improves 3D interpretation of scenes.
منابع مشابه
A Coarse-to-Fine Indoor Layout Estimation (CFILE) Method
The task of estimating the spatial layout of cluttered indoor scenes from a single RGB image is addressed in this work. Existing solutions to this problems largely rely on hand-craft features and vanishing lines, and they often fail in highly cluttered indoor rooms. The proposed coarse-to-fine indoor layout estimation (CFILE) method consists of two stages: 1) coarse layout estimation; and 2) fi...
متن کاملGenerating an Indoor space routing graph using semantic-geometric method
The development of indoor Location-Based Services faces various challenges that one of which is the method of generating indoor routing graph. Due to the weaknesses of purely geometric methods for generating indoor routing graphs, a semantic-geometric method is proposed to cover the existing gaps in combining the semantic and geometric methods in this study. The proposed method uses the CityGML...
متن کاملSemantic Labeling of 3D Point Clouds for Indoor Scenes
Inexpensive RGB-D cameras that give an RGB image together with depth data have become widely available. In this paper, we use this data to build 3D point clouds of full indoor scenes such as an office and address the task of semantic labeling of these 3D point clouds. We propose a graphical model that captures various features and contextual relations, including the local visual appearance and ...
متن کاملA Discriminative Model for Learning Semantic and Geometric Interactions in Indoor Scenes∗
Visual scene understanding is a difficult problem, interleaving object detection, geometric reasoning and scene classification. Consider the scene in Fig. 1.(a). A scene classifier will tell you, with some uncertainty, that this is a dining room [6, 3]. A layout estimator [5, 7] will tell you, with different uncertainty, how to fit a box to the room. An object detector [8, 4] will tell you, wit...
متن کاملSynthCam3D: Semantic Understanding With Synthetic Indoor Scenes
We are interested in automatic scene understanding from geometric cues. To this end, we aim to bring semantic segmentation in the loop of real-time reconstruction. Our semantic segmentation is built on a deep autoencoder stack trained exclusively on synthetic depth data generated from our novel 3D scene library, SynthCam3D. Importantly, our network is able to segment real world scenes without a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013